Topological and electronic transitions in a Sb(111) nanofilm: The interplay between quantum confinement and surface effect

نویسندگان

  • PengFei Zhang
  • Zheng Liu
  • Wenhui Duan
  • Feng Liu
  • Jian Wu
چکیده

When the dimension of a solid structure is reduced, there will be two emerging effects, quantum confinement and surface effect, which dominate at nanoscale. Based on first-principles calculations, we demonstrate that due to an intriguing interplay between these two dominating effects, the topological and electronic (topoelectronic) properties of Sb (111) nanofilms undergo a series of transitions as a function of the reducing film thickness: transforming from a topological semimetal to a topological insulator at 7.8 nm (22 bilayer), then to a quantum spin Hall (QSH) phase at 2.7 nm (8 bilayer), and finally, to a normal (topological trivial) semiconductor at 1.0 nm (3 bilayer). Our theoretical findings identify the existence of the QSH in the Sb (111) nanofilms within a narrow range of thickness and suggest that the Sb (111) nanofilms provide an ideal test bed for experimental study of topoelectronic phase transitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering Electronic Structure of a Two-Dimensional Topological Insulator Bi(111) Bilayer on Sb Nanofilms by Quantum Confinement Effect.

We report on the fabrication of a two-dimensional topological insulator Bi(111) bilayer on Sb nanofilms via a sequential molecular beam epitaxy growth technique. Our angle-resolved photoemission measurements demonstrate the evolution of the electronic band structure of the heterostructure as a function of the film thickness and reveal the existence of a two-dimensional spinful massless electron...

متن کامل

Size-dependent structural and electronic properties of Bi(111) ultrathin nanofilms from first principles

Few layer bismuth nanofilms with (111) orientation have shown striking electronic properties, especially as building blocks of novel two-dimensional heterostructures. In this paper we present state-of-the-art first principles calculations, based on both density functional theory and maximally localized Wannier functions, that encompass electronic and structural properties of free-standing Bi(11...

متن کامل

سیستمهای ناکام و همبسته الکترونی

 Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the hig...

متن کامل

Electrically tunable quantum spin Hall state in topological crystalline insulator thin films

Based on electronic structure calculations and theoretical analysis, we predict the (111) thin films of the SnTe class of three-dimensional (3D) topological crystalline insulators (TCIs) realize the quantum spin Hall phase in a wide range of thicknesses. The nontrivial topology originates from the intersurface coupling of the topological surface states of TCIs in the 3D limit. The intersurface ...

متن کامل

Correlated motion of electrons on the Au(111) surface: anomalous acoustic surface-plasmon dispersion and single-particle excitations.

The linear dispersion of the low-dimensional acoustic surface plasmon (ASP) opens perspectives in energy conversion, transport, and confinement far below optical frequencies. Although the ASP exists in a wide class of materials, ranging from metal surfaces and ultrathin films to graphene and topological insulators, its properties are still largely unexplored. Taking Au(111) as a model system, o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012